By Topic

Efficient Bayesian Tracking of Multiple Sources of Neural Activity: Algorithms and Real-Time FPGA Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lifeng Miao ; Sch. of Electr., Comput. & Energy Eng., Arizona State Univ., Tempe, AZ, USA ; Zhang, J.J. ; Chakrabarti, C. ; Papandreou-Suppappola, A.

We propose new Bayesian algorithms to automatically track current dipole sources of neural activity in real time. We integrate multiple particle filters to track the dynamic parameters of a known number of dipole sources, resulting in reducing the computational intensity incurred due to the large number of sensors required to observe magnetoencephalography (MEG) or electroencephalography (EEG) measurements. When we also need to estimate the time-varying number of dipole sources, we develop an algorithm based on applying probability hypothesis density filtering (PHDF) for multiple object tracking. The PHDF is implemented using particle filters (PF-PHDF), and it is applied in a closed-loop with MEG/EEG measurements to first estimate the number of sources and then their corresponding amplitude, location and orientation. The PF-PHDF tracking algorithm uses an online, window-based multiple channel decomposition processing approach that reduces the overall processing time and computational complexity. We demonstrate the improved performances of the proposed algorithms by simulating neural activity tracking systems witWe propose new Bayesian algorithms to automatically track current dipole sources of neural activity in real time. We integrate multiple particle filters to track the dynamic parameters of a known number of dipole sources, resulting in reducing the computational intensity incurred due to the large number of sensors required to observe magnetoencephalography (MEG) or electroencephalography (EEG) measurements. When we also need to estimate the time-varying number of dipole sources, we develop an algorithm based on applying probability hypothesis density filtering (PHDF) for multiple object tracking. The PHDF is implemented using particle filters (PF-PHDF), and it is applied in a closed-loop with MEG/EEG measurements to first estimate the number of sources and then their corresponding amplitude, location and orientation. The PF-PHDF tracking algorithm uses an on- ine, window-based multiple channel decomposition processing approach that reduces the overall processing time and computational complexity. We demonstrate the improved performances of the proposed algorithms by simulating neural activity tracking systems with both synthetic and real data. We map the proposed algorithms onto Xilinx Virtex-5 field-programmable gate array (FPGA) platforms and demonstrate real-time tracking performance. For example, our results showed that the PF-PHDF algorithm can process 100 data samples from three dipoles in only 5.1 ms, when 3 dipole sources are present.h both synthetic and real data. We map the proposed algorithms onto Xilinx Virtex-5 field-programmable gate array (FPGA) platforms and demonstrate real-time tracking performance. For example, our results showed that the PF-PHDF algorithm can process 100 data samples from three dipoles in only 5.1 ms, when 3 dipole sources are present.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 3 )