By Topic

Performance of Two Low-Rank STAP Filters in a Heterogeneous Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ginolhac, G. ; SATIE-ENS Cachan, LISTIC-Polytech Annecy-Chambery, Annecy le Vieux, France ; Forster, P. ; Pascal, F. ; Ovarlez, J.-P.

This paper considers the Space Time Adaptive Processing (STAP) problem where the disturbance is modeled as the sum of a Low-Rank (LR) Spherically Invariant Random Vector (SIRV) clutter and a zero-mean white Gaussian noise. To derive our adaptive LR-STAP filters, the estimation of the projector onto the clutter subspace is performed from the Sample Covariance Matrix (SCM) and the Normalized Sample Covariance Matrix (NSCM). We compute the theoretical performance of both corresponding LR-STAP filters through the analysis of the Signal to Interference plus Noise Ratio (SINR) Loss, based on a perturbation analysis. Numerical simulations validate the theoretical formula and allow to show that the LR-STAP filter built from the SCM performance does not depend on the heterogeneity of the SIRV clutter whereas the LR-STAP filter built from the NSCM performance does.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 1 )