By Topic

Image Feature Representation of the Subband Power Distribution for Robust Sound Event Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jonathan Dennis ; Institute for Infocomm Research, Agency for Science, Technology and Research, Singapore ; Huy Dat Tran ; Eng Siong Chng

The ability to automatically recognize a wide range of sound events in real-world conditions is an important part of applications such as acoustic surveillance and machine hearing. Our approach takes inspiration from both audio and image processing fields, and is based on transforming the sound into a two-dimensional representation, then extracting an image feature for classification. This provided the motivation for our previous work on the spectrogram image feature (SIF). In this paper, we propose a novel method to improve the sound event classification performance in severe mismatched noise conditions. This is based on the subband power distribution (SPD) image - a novel two-dimensional representation that characterizes the spectral power distribution over time in each frequency subband. Here, the high-powered reliable elements of the spectrogram are transformed to a localized region of the SPD, hence can be easily separated from the noise. We then extract an image feature from the SPD, using the same approach as for the SIF, and develop a novel missing feature classification approach based on a nearest neighbor classifier (kNN). We carry out comprehensive experiments on a database of 50 environmental sound classes over a range of challenging noise conditions. The results demonstrate that the SPD-IF is both discriminative over the broad range of sound classes, and robust in severe non-stationary noise.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:21 ,  Issue: 2 )