Cart (Loading....) | Create Account
Close category search window

Improvement of Efficiency Droop in Blue InGaN Light-Emitting Diodes With p-InGaN/GaN Superlattice Last Quantum Barrier

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chen, J. ; Experimental Teaching Department, Guangdong University of Technology, Guangzhou, China ; Fan, G.-H. ; Pang, W. ; Zheng, S.-W.
more authors

The blue InGaN light-emitting diodes (LEDs) with specific designs of p-InGaN/GaN superlattice (SL) last quantum barrier are investigated numerically and experimentally. The proposed SL with a graded indium mole fraction from 0% to 5% shows improved efficiency droop and superior optical characteristics in comparison with the conventional LEDs. As indicated by the simulation results, the promotion of hole injection and the reduction of electron leakage play important roles in these improvements. Fabricated LEDs with this specific design exhibit stronger emission intensity, smaller forward voltage, and larger light output power compared to its counterparts.

Published in:

Photonics Technology Letters, IEEE  (Volume:24 ,  Issue: 24 )

Date of Publication:

Dec.15, 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.