By Topic

Probabilistic Sensing Model for Sensor Placement Optimization Based on Line-of-Sight Coverage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vahab Akbarzadeh ; Lab. de Vision et Syst. Numeriques, Univ. Laval, Quebec City, QC, Canada ; Christian Gagne ; Marc Parizeau ; Meysam Argany
more authors

This paper proposes a probabilistic sensor model for the optimization of sensor placement. Traditional schemes rely on simple sensor behaviour and environmental factors. The consequences of these oversimplifications are unrealistic simulation of sensor performance and, thus, suboptimal sensor placement. In this paper, we develop a novel probabilistic sensing model for sensors with line-of-sight-based coverage (e.g., cameras) to tackle the sensor placement problem for these sensors. The probabilistic sensing model consists of membership functions for sensing range and sensing angle, which takes into consideration sensing capacity probability as well as critical environmental factors such as terrain topography. We then implement several optimization schemes for sensor placement optimization, including simulated annealing, limited-memory Broyden-Fletcher-Goldfarb-Shanno method, and covariance matrix adaptation evolution strategy.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:62 ,  Issue: 2 )