By Topic

Semantic advisor-assisting framework to select learning materials

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mahmoudi, M.T. ; Sch. of ECE, Univ. of Tehran, Tehran, Iran ; Taghiyareh, F. ; Rajavi, K. ; Shokri, F.
more authors

Selecting appropriate educational documents among enormous existing contents turns advisors into making use of some automatic content assessment systems. There exist various content assessment methods which usually consider at least one of syntactic, semantic and structural perspectives through information retrieval or machine learning algorithms. In this paper, a framework for assessing learning materials based on analytical, combinational learning algorithms is represented that is capable of assisting advisors in their selection for recommending those contents to students. The focus of proposed framework is on determining required fitness in educational summaries by semantic rules. The proposed framework is examined on a dataset of summaries and compared to the expert's assessment on the same learning materials. The comparison results reveal that the proposed semantic advisor-assisting framework was successful in almost 70% of cases.

Published in:

E-Learning and E-Teaching (ICELET), 2012 Third International Conference on

Date of Conference:

14-15 Feb. 2012