By Topic

Data Mining Over Biological Datasets: An Integrated Approach Based on Computational Intelligence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Georgina Stegmayer ; CIDISI, National Scientific & Technical Research Council, Argentina ; Matias Gerard ; Diego H. Milone

Biology is in the middle of a data explosion. The technical advances achieved by the genomics, metabolomics, transcriptomics and proteomics technologies in recent years have significantly increased the amount of data that are available for biologists to analyze different aspects of an organism. However, *omics data sets have several additional problems: they have inherent biological complexity and may have significant amounts of noise as well as measurement artifacts. The need to extract information from such databases has once again become a challenge. This requires novel computational techniques and models to automatically perform data mining tasks such as integration of different data types, clustering and knowledge discovery, among others. In this article, we will present a novel integrated computational intelligence approach for biological data mining that involves neural networks and evolutionary computation. We propose the use of self-organizing maps for the identification of coordinated patterns variations; a new training algorithm that can include a priori biological information to obtain more biological meaningful clusters; a validation measure that can assess the biological significance of the clusters found; and finally, an evolutionary algorithm for the inference of unknown metabolic pathways involving the selected clusters.

Published in:

IEEE Computational Intelligence Magazine  (Volume:7 ,  Issue: 4 )