Cart (Loading....) | Create Account
Close category search window
 

Automatic Detection of Atrial Fibrillation in Cardiac Vibration Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bruser, C. ; Dept. of Med. Inf. Technol., RWTH Aachen Univ., Aachen, Germany ; Diesel, J. ; Zink, M.D.H. ; Winter, S.
more authors

We present a study on the feasibility of the automatic detection of atrial fibrillation (AF) from cardiac vibration signals (ballistocardiograms/BCGs) recorded by unobtrusive bed-mounted sensors. The proposed system is intended as a screening and monitoring tool in home-healthcare applications and not as a replacement for ECG-based methods used in clinical environments. Based on the BCG data recorded in a study with ten AF patients, we evaluate and rank seven popular machine learning algorithms (naive Bayes, linear and quadratic discriminant analysis, support vector machines, random forests as well as bagged and boosted trees) for their performance in separating 30-s long BCG epochs into one of three classes: sinus rhythm, AF, and artifact. For each algorithm, feature subsets of a set of statistical time-frequency-domain and time-domain features were selected based on the mutual information between features and class labels as well as the first- and second-order interactions among features. The classifiers were evaluated on a set of 856 epochs by means of tenfold cross validation. The best algorithm (random forests) achieved a Matthews correlation coefficient, mean sensitivity, and mean specificity of 0.921, 0.938, and 0.982, respectively.

Published in:

Biomedical and Health Informatics, IEEE Journal of  (Volume:17 ,  Issue: 1 )

Date of Publication:

Jan. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.