By Topic

Evaluation of the “Hill Climbing” and the “Incremental Conductance” Maximum Power Point Trackers for Photovoltaic Power Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Maximum power point tracking (MPPT) is an important function in all photovoltaic (PV) power systems. The classical “hill climbing” and “incremental conductance” MPPT algorithms are widely applied in many papers and applications. Both algorithms perturb the operating conditions of the PV array and detect the changes in generated power. Since the detected change in generated power also could be a result of changes in irradiance, both algorithms are prone to failure in case of large changes in irradiance. This paper starts to discuss the size of the perturbation of the operating conditions for both algorithms, based on the single-diode model. The result is used to select the updating frequency for the two algorithms, in order not to run away under certain dynamic conditions. Both algorithms are implemented in an inverter and tested over 16 days of simultaneous operation. Basic statistical procedures, the paired t-test, have been applied to the data with the conclusion that the two algorithms perform equally good.

Published in:

Energy Conversion, IEEE Transactions on  (Volume:27 ,  Issue: 4 )