By Topic

GPS Signal-in-Space Integrity Performance Evolution in the Last Decade

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Liang Heng ; Dept. of Electr. Eng., Stanford Univ., Stanford, CA, USA ; Gao, G.X. ; Walter, T. ; Enge, P.

Knowledge of the Global Positioning System (GPS) signal-in-space (SIS) anomalies in history has a great importance for not only assessing the general performance of GPS SIS integrity but also validating the fundamental assumption of receiver autonomous integrity monitoring (RAIM): at most one satellite fault at a time. The main purpose of this paper is to screen out all potential SIS anomalies in the last decade by comparing broadcast ephemerides and clocks with precise ones. Validated broadcast navigation messages are generated from 397,044,414 navigation messages logged by on average 410 International GNSS Service (IGS) stations during the period 6/1/2000-8/31/2010. Both IGS and National Geospatial-Intelligence Agency (NGA) precise ephemerides/clocks are used as truth references. Finally, 1256 potential SIS anomalies are screened out. These anomalies show an improving SIS integrity performance in the last decade, from tens or hundreds of anomalies per year before 2003 to on average two anomalies per year after 2008. Moreover, the fundamental assumption of RAIM is valid because never have two SIS anomalies or more occurred simultaneously since 2004.

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:48 ,  Issue: 4 )