By Topic

Video Deblurring Algorithm Using Accurate Blur Kernel Estimation and Residual Deconvolution Based on a Blurred-Unblurred Frame Pair

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Dong-Bok Lee ; School of Electronic Engineering, Inha University, Incheon, Korea ; Shin-Cheol Jeong ; Yun-Gu Lee ; Byung Cheol Song

Blurred frames may happen sparsely in a video sequence acquired by consumer devices such as digital camcorders and digital cameras. In order to avoid visually annoying artifacts due to those blurred frames, this paper presents a novel motion deblurring algorithm in which a blurred frame can be reconstructed utilizing the high-resolution information of adjacent unblurred frames. First, a motion-compensated predictor for the blurred frame is derived from its neighboring unblurred frame via specific motion estimation. Then, an accurate blur kernel, which is difficult to directly obtain from the blurred frame itself, is computed using both the predictor and the blurred frame. Next, a residual deconvolution is applied to both of those frames in order to reduce the ringing artifacts inherently caused by conventional deconvolution. The blur kernel estimation and deconvolution processes are iteratively performed for the deblurred frame. Simulation results show that the proposed algorithm provides superior deblurring results over conventional deblurring algorithms while preserving details and reducing ringing artifacts.

Published in:

IEEE Transactions on Image Processing  (Volume:22 ,  Issue: 3 )