By Topic

Fuzzy system improves the performance of wavelet-based correlation detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. N. Strickland ; Dept. of Electr. & Comput. Eng., Arizona Univ., Tucson, AZ, USA ; G. J. Lukins

A fuzzy system is designed to classify features in the output of a wavelets-based correlation filter used for enhancing clusters of fine, granular microcalcifications-an early sign of cancer-in digitized mammograms. Each local peak in the correlation filter output is represented by a set of five features describing the shape, size and definition of the peak. These features-prominence, steepness, distinctness, compactness, and departure-are used in linguistic rules such as “IF prominence is high AND distinctness is mid-ranged AND steepness is mid-ranged THEN it might be a calcification.” A fuzzy rule-based system with eight rules is trained to distinguish between microcalcifications and normal mammogram texture. Compared to wavelet processing alone, the fuzzy detection system produces an improvement of around 10% in true positive fraction when tested on a public domain mammogram database

Published in:

Image Processing, 1997. Proceedings., International Conference on  (Volume:3 )

Date of Conference:

26-29 Oct 1997