By Topic

Distribution system security region: definition, model and security assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiao, J. ; Key Lab. of Smart Grid of Minist. of Educ., Tianjin Univ., Tianjin, China ; Gu, W. ; Wang, C. ; Li, F.

The region-based method has been successfully applied in transmission systems. This study proposes the definition, model and applications of security region for distribution systems. With the ongoing smart grid initiatives, a large amount of real-time network information will be available. This is the motivation of an accurate calculation of the security boundary. First, this study presents the concepts of distribution system security region (DSSR); and discusses N-1 contingency scenarios for both substation transformers and feeders. Second, distribution system security boundary is modelled in the Euclidean space as several intersected hyperplanes. Furthermore, DSSR for substation transformer contingency is modelled as the space surrounded by the security boundaries and the set of all operating points that ensure the distribution system N-1 security. Third, distance from an operating point to a security boundary is formulated and a new index is also presented for security evaluation. The proposed DSSR-based security assessment method provides a new approach for future smart distribution system operation. Finally, the results from a real distribution system have demonstrated the effectiveness of the proposed concepts and methods; and the geometric characteristics of DSSR are also illustrated by means of two-dimensional visualisation of the test system.

Published in:

Generation, Transmission & Distribution, IET  (Volume:6 ,  Issue: 10 )