By Topic

Effect of micro-fillers in polytetrafluoroethylene insulators on the characteristics of surface discharges in presence of SF6 CO2 and SF6-CO mixture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Beroual, A. ; AMPERE Lab., Ecole Centrale de Lyon, Ecully, France ; Coulibaly, M.L. ; Aitken, O. ; Girodet, A.

This study is devoted to the optical and electrical characterisation of discharges propagating over insulators made of polytetrafluoroethylene (PTFE) filled with different kinds of micro-mineral fillers immersed in gas or gaseous mixture, under lightning impulse voltage (1.2/50 s), using a point-plane electrode arrangement. The fillers the authors investigated are MoS2, Al2CoO4, SiO2 and CaF2. The gases and mixture the authors considered are SF6, CO2 and SF6-CO2. It is shown that the stopping length of discharges Lf increases quasi-linearly with the voltage; Lf is shorter in SF6 than in CO2 and it is higher when the point electrode is positive than when it is negative while the initiation voltage of discharges is higher with a negative point than with a positive one. The discharges do not always present a radial structure as reported in the literature. Also, the type of filler greatly influences the characteristics of creeping discharges. In a given gas or mixture, the shortest Lf is obtained with PTFE filled with MoS2 or Al2CoO4. Thus, insulators with these fillers appear as the best insulators.

Published in:

Generation, Transmission & Distribution, IET  (Volume:6 ,  Issue: 10 )