Cart (Loading....) | Create Account
Close category search window

Optimization of Cooperative Beamforming for SC-FDMA Multi-User Multi-Relay Networks by Tractable D.C. Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ha Hoang Kha ; Fac. of Eng. & Inf. Technol., Univ. of Technol., Sydney, NSW, Australia ; Hoang Duong Tuan ; Nguyen, H.H. ; Pham, T.T.

This paper addresses the optimal cooperative beamforming design for multi-user multi-relay wireless networks in which the single-carrier frequency division multiple access (SC-FDMA) technique is employed at the terminals. The problem of interest is to find the beamforming weights across relays to maximize the minimum signal-to-interference-plus-noise ratio (SINR) among source users subject to individual power constraints at each relay. Such a beamforming design is shown to be a hard nonconvex optimization problem and therefore it is mathematically challenging to find the optimal solution. By exploring its partial convex structures, we recast the design problem as minimization of a d.c. (difference of two convex) objective function subject to convex constraints and develop an effective iterative algorithm of low complexity to solve it. Simulation results show that our optimal cooperative beamforming scheme realizes the inherent diversity order of the relay network and it performs significantly better than the equal-power beamforming weights.

Published in:

Signal Processing, IEEE Transactions on  (Volume:61 ,  Issue: 2 )

Date of Publication:

Jan.15, 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.