By Topic

Nonparametric Mixtures of Gaussian Processes With Power-Law Behavior

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sotirios P. Chatzis ; Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus ; Yiannis Demiris

Gaussian processes (GPs) constitute one of the most important Bayesian machine learning approaches, based on a particularly effective method for placing a prior distribution over the space of regression functions. Several researchers have considered postulating mixtures of GPs as a means of dealing with nonstationary covariance functions, discontinuities, multimodality, and overlapping output signals. In existing works, mixtures of GPs are based on the introduction of a gating function defined over the space of model input variables. This way, each postulated mixture component GP is effectively restricted in a limited subset of the input space. In this paper, we follow a different approach. We consider a fully generative nonparametric Bayesian model with power-law behavior, generating GPs over the whole input space of the learned task. We provide an efficient algorithm for model inference, based on the variational Bayesian framework, and prove its efficacy using benchmark and real-world datasets.

Published in:

IEEE Transactions on Neural Networks and Learning Systems  (Volume:23 ,  Issue: 12 )