By Topic

An all-digital clock and data recovery circuit for spread spectrum clocking applications in 65nm CMOS technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ching-Che Chung ; Dept. of Comput. Sci. & Inf. Eng., Nat. Chung Cheng Univ., Chiayi, Taiwan ; Duo Sheng ; Yang-Di Lin

In this paper, an all-digital clock and data recovery (ADCDR) circuit is presented. The proposed ADCDR can recover the data stream sent by a transmitter with a spread spectrum clock generator (SSCG). The proposed adaptive gain control scheme can automatically adjust the phase tracking gain by counting the consecutive identical digits (CID), and the time-to-digital converter (TDC)-based fast phase compensation can quickly compensate for a large phase error. The proposed ADCDR can tolerate input peak-to-peak jitter up to 130ps at 480MHz with the down-spread 10% modulation. In addition, the bit error rate (BER) is less than 10-12 with 231-1 pseudo-random binary sequence (PRBS). The proposed ADCDR is implemented in a standard performance 65nm CMOS process with standard cells. The active area is 130μm × 100μm, and the power consumption is 1.13mW at 480MHz with the down-spread 10% modulation.

Published in:

Quality Electronic Design (ASQED), 2012 4th Asia Symposium on

Date of Conference:

10-11 July 2012