Cart (Loading....) | Create Account
Close category search window
 

A Multivariable Design Methodology for Voltage Control of a Single-DG-Unit Microgrid

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bahrani, B. ; Ind. Electron. Lab., Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland ; Saeedifard, M. ; Karimi, A. ; Rufer, A.

This paper proposes a multivariable digital control design methodology for the voltage regulation of an islanded single distributed generation (DG) unit microgrid and its dedicated load. The controller design methodology is based on a family of spectral Multi-Input Multi-Output (MIMO) models of the microgrid system and performs open-loop shaping and system decoupling simultaneously by a convex optimization approach. The control design procedure includes: (i) the determination of a family of nonparametric models of the system at various operating points, (ii) the determination of the class of the controller, and (iii) system open-loop shaping by convex minimization of the summation of the square second norm of the errors between the system open-loop transfer functions and a desired open-loop transfer function. Based on the proposed design methodology, two dq -augmented voltage controllers are proposed to regulate the load voltages of a single-DG-unit microgrid. The proposed controllers guarantee the robust stability and satisfactory dynamic response of the system in spite of load parametric uncertainties and also the presence of nonlinear load. This paper describes the theoretical aspects involved in the design procedure of the controllers and evaluates the performance of the controllers based on simulation studies and experiments.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:9 ,  Issue: 2 )

Date of Publication:

May 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.