By Topic

Generation control system for improving design and stability of medium-voltage DC power systems on ships

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Arcidiacono, V. ; Dept. of Ind. Eng. & Archit., Univ. of Trieste, Trieste, Italy ; Monti, A. ; Sulligoi, G.

Voltage stability in medium-voltage DC (MVDC) power systems on ships is a key design goal. MVDC bus voltage stability can be impaired because of the presence of power electronic converters that can induce negative incremental resistance instabilities. This study presents a control strategy that stabilises MVDC bus voltage in the presence of destabilising constant power load converters. A state-feedback adaptive control is designed by linearisation and implemented using controlled interface converters connecting the MVAC alternators to the MVDC bus. Large signal stability of the control system is assessed using Lyapunov techniques. The proposed control is verified against both average-simplified and detailed time-domain numerical simulations, thus providing a two-way comparison.

Published in:

Electrical Systems in Transportation, IET  (Volume:2 ,  Issue: 3 )