By Topic

Analyses of the Evolution of Iron-Silicide Precipitates in Multicrystalline Silicon During Solar Cell Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Jonas Schön ; Fraunhofer Institute for Solar Energy Systems, 79100 Freiburg, Germany ; Antti Haarahiltunen ; Hele Savin ; David P. Fenning
more authors

We simulate the precipitation of iron during the multicrystalline ingot crystallization process and the redistribution of iron during subsequent phosphorus diffusion gettering with a 2-D model. We compare the simulated size distribution of the precipitates with the X-ray fluorescence microscopy measurements of iron precipitates along a grain boundary. We find that the simulated and measured densities of precipitates larger than the experimental detection limit are in good agreement after the crystallization process. Additionally, we demonstrate that the measured decrease of the line density and the increase of the mean size of the iron precipitates after phosphorus diffusion gettering can be reproduced with the simulations. The size and spatial distribution of iron precipitates affect the kinetics of iron redistribution during the solar cell process and, ultimately, the recombination activity of the precipitated iron. Variations of the cooling rate after solidification and short temperature peaks before phosphorus diffusion strongly influence the precipitate size distribution. The lowest overall density of iron precipitates after phosphorus diffusion is obtained in the simulations with a temperature peak before phosphorus diffusion, followed by moderate cooling rates.

Published in:

IEEE Journal of Photovoltaics  (Volume:3 ,  Issue: 1 )