By Topic

Real-Time Price-Based Demand Response Management for Residential Appliances via Stochastic Optimization and Robust Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhi Chen ; Electrical and Computer Engineering Department, Clarkson University, Potsdam, NY, USA ; Lei Wu ; Yong Fu

This paper evaluates the real-time price-based demand response (DR) management for residential appliances via stochastic optimization and robust optimization approaches. The proposed real-time price-based DR management application can be imbedded into smart meters and automatically executed on-line for determining the optimal operation of residential appliances within 5-minute time slots while considering uncertainties in real-time electricity prices. Operation tasks of residential appliances are categorized into deferrable/non-deferrable and interruptible/non-interruptible ones based on appliances' DR preferences as well as their distinct spatial and temporal operation characteristics. The stochastic optimization adopts the scenario-based approach via Monte Carlo (MC) simulation for minimizing the expected electricity payment for the entire day, while controlling the financial risks associated with real-time electricity price uncertainties via the expected downside risks formulation. Price uncertainty intervals are considered in the robust optimization for minimizing the worst-case electricity payment while flexibly adjusting the solution robustness. Both approaches are formulated as mixed-integer linear programming (MILP) problems and solved by state-of-the-art MILP solvers. The numerical results show attributes of the two approaches for solving the real-time optimal DR management problem for residential appliances.

Published in:

IEEE Transactions on Smart Grid  (Volume:3 ,  Issue: 4 )