Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Fast and Robust Compressive Sensing Method Using Mixed Hadamard Sensing Matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Shishkin, S.L. ; United Technol. Res. Center, East Hartford, CT, USA

The paper presents a novel class of sensing matrix that provides great speed-up of virtually any compressed sensing (CS) algorithm. It combines separable structure and maximal incoherence with any fixed basis. The former enables fast matrix-vector computation which is the most computationally expensive part of most CS algorithms; the latter guarantees a good restricted isometry property bound and high quality of CS recovery. Even greater speed-up is achieved by using Hadamard or Fourier matrixes in the construction. The construction of the sensing matrix is incorporated in a Split Bregman method of total variation minimization. The resulting algorithm is not only much faster than any published CS method; it also demonstrates high quality CS recovery of images with the number of measurements as low as 5% of the number of pixels, in the presence of high measurement noise (up to 20% of measurement standard deviation).

Published in:

Emerging and Selected Topics in Circuits and Systems, IEEE Journal on  (Volume:2 ,  Issue: 3 )