Cart (Loading....) | Create Account
Close category search window

Optimal design of a wireless power transfer system with multiple self-resonators for an LED TV

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jinwook Kim ; Korea Electrotechnol. Res. Inst. (KERI), Univ. of Sci. & Technol. (UST), Ansan, South Korea ; Hyeon-Chang Son ; Do-Hyeon Kim ; Young-Jin Park

This paper proposes an optimal design method in an asymmetric wireless power transfer (WPT) system for a 150 watt LED TV. The WPT system has three self-resonators: a Tx resonator, an Rx resonator, and an intermediate resonator. The Tx and Rx resonators are perpendicular and offset, respectively, to the intermediate resonator in the geometry. For optimal design, the WPT system is analyzed using an equivalent circuit. In particular, a calculation method for mutual inductance in the system is expressed. The calculation results of mutual inductance are used to determine the optimal position of each self-resonator for maximizing the power transfer efficiency. For verification, a WPT system for a 150 watt, 47 inch LED TV is fabricated at 250 kHz. The WPT system exhibits wireless power transfer efficiency of 80%.

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 3 )

Date of Publication:

August 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.