By Topic

Modified Gradient Search for Level Set Based Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Andersson, T. ; Center for Med. Image Sci. & Visualization, Linkoping Univ., Linkoping, Sweden ; Lathen, G. ; Lenz, R. ; Borga, M.

Level set methods are a popular way to solve the image segmentation problem. The solution contour is found by solving an optimization problem where a cost functional is minimized. Gradient descent methods are often used to solve this optimization problem since they are very easy to implement and applicable to general nonconvex functionals. They are, however, sensitive to local minima and often display slow convergence. Traditionally, cost functionals have been modified to avoid these problems. In this paper, we instead propose using two modified gradient descent methods, one using a momentum term and one based on resilient propagation. These methods are commonly used in the machine learning community. In a series of 2-D/3-D-experiments using real and synthetic data with ground truth, the modifications are shown to reduce the sensitivity for local optima and to increase the convergence rate. The parameter sensitivity is also investigated. The proposed methods are very simple modifications of the basic method, and are directly compatible with any type of level set implementation. Downloadable reference code with examples is available online.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 2 )