By Topic

Non-Lipschitz \ell _{p} -Regularization and Box Constrained Model for Image Restoration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaojun Chen ; Department of Applied Mathematics, Hong Kong Polytechnic University, Kowloon, Hong Kong ; Michael K. Ng ; Chao Zhang

Nonsmooth nonconvex regularization has remarkable advantages for the restoration of piecewise constant images. Constrained optimization can improve the image restoration using a priori information. In this paper, we study regularized nonsmooth nonconvex minimization with box constraints for image restoration. We present a computable positive constant θ for using nonconvex nonsmooth regularization, and show that the difference between each pixel and its four adjacent neighbors is either 0 or larger than θ in the recovered image. Moreover, we give an explicit form of θ for the box-constrained image restoration model with the non-Lipschitz nonconvex ℓp-norm (0 <; p <; 1) regularization. Our theoretical results show that any local minimizer of this imaging restoration problem is composed of constant regions surrounded by closed contours and edges. Numerical examples are presented to validate the theoretical results, and show that the proposed model can recover image restoration results very well.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 12 )