By Topic

Unsupervised Amplitude and Texture Classification of SAR Images With Multinomial Latent Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kayabol, K. ; Istanbul Tech. Univ., Istanbul, Turkey ; Zerubia, J.

In this paper, we combine amplitude and texture statistics of the synthetic aperture radar images for the purpose of model-based classification. In a finite mixture model, we bring together the Nakagami densities to model the class amplitudes and a 2-D auto-regressive texture model with t-distributed regression error to model the textures of the classes. A non-stationary multinomial logistic latent class label model is used as a mixture density to obtain spatially smooth class segments. The classification expectation-maximization algorithm is performed to estimate the class parameters and to classify the pixels. We resort to integrated classification likelihood criterion to determine the number of classes in the model. We present our results on the classification of the land covers obtained in both supervised and unsupervised cases processing TerraSAR-X, as well as COSMO-SkyMed data.

Published in:

Image Processing, IEEE Transactions on  (Volume:22 ,  Issue: 2 )