By Topic

Rough-Set-Based Feature Selection and Classification for Power Quality Sensing Device Employing Correlation Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sovan Dalai ; Electr. Eng. Dept., Jadavpur Univ., Kolkata, India ; Biswendu Chatterjee ; Debangshu Dey ; Sivaji Chakravorti
more authors

In this paper, we present a scheme of rough-set-based minimal set of feature selection and classification of power quality disturbances that can be implemented in a general-purpose microcontroller for embedded applications. The developed scheme can efficiently sense the power quality disturbances by the features extracted from the cross-correlogram of power quality disturbance waveforms. In this paper, a stand-alone module, employing microcontroller-based embedded system, is devised for efficiently sensing power quality disturbances in real time for in situ applications. The stand-alone module is developed on a PIC24F series microcontroller. Results show that the accuracy of the proposed scheme is comparable to that obtained in offline analysis using a computer. The method stated here is generic in nature and can be implemented for other microcontroller-based applications for topologically similar problems.

Published in:

IEEE Sensors Journal  (Volume:13 ,  Issue: 2 )