By Topic

A Multilevel Iterated-Shrinkage Approach to l_{1} Penalized Least-Squares Minimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Eran Treister ; Department of Computer Science, The Technion—Israel Institute of Technology, Haifa, Israel ; Irad Yavneh

The area of sparse approximation of signals is drawing tremendous attention in recent years. Typically, sparse solutions of underdetermined linear systems of equations are required. Such solutions are often achieved by minimizing an l1 penalized least squares functional. Various iterative-shrinkage algorithms have recently been developed and are quite effective for handling these problems, often surpassing traditional optimization techniques. In this paper, we suggest a new iterative multilevel approach that reduces the computational cost of existing solvers for these inverse problems. Our method takes advantage of the typically sparse representation of the signal, and at each iteration it adaptively creates and processes a hierarchy of lower-dimensional problems employing well-known iterated shrinkage methods. Analytical observations suggest, and numerical results confirm, that this new approach may significantly enhance the performance of existing iterative shrinkage algorithms in cases where the matrix is given explicitly.

Published in:

IEEE Transactions on Signal Processing  (Volume:60 ,  Issue: 12 )