By Topic

Copula-Based Statistical Health Grade System Against Mechanical Faults of Power Transformers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chao Hu ; Dept. of Mech. Eng., Univ. of Maryland, College Park, MD, USA ; Pingfeng Wang ; Youn, B.D. ; Wook-Ryun Lee
more authors

A health grade system against mechanical faults of power transformers has been little investigated compared to those for chemical and electrical faults. This paper thus presents a statistical health grade system against mechanical faults in power transformers used in nuclear powerplant sites where the mechanical joints and/or parts are the ones used for constraining transformer cores. Two health metrics-RMS and root mean square deviation of spectral responses at harmonic frequencies-are first defined using vibration signals acquired via insite sensors on 54 power transformers in several nuclear powerplants in 16 months. We then investigate a novel multivariate statistical model, namely copula, to statistically model the populated data of the health metrics. The preliminary study shows that the proposed health metrics and statistical health grade system are feasible to monitor and predict the health condition of the mechanical faults in the power transformers.

Published in:

Power Delivery, IEEE Transactions on  (Volume:27 ,  Issue: 4 )