By Topic

Model-Based Proprioceptive State Estimation for Spring-Mass Running

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Autonomous applications of legged platforms will inevitably require accurate state estimation both for feedback control as well as mapping and planning. Even though kinematic models and low-bandwidth visual localization may be sufficient for fully-actuated, statically stable legged robots, they are inadequate for dynamically dexterous, underactuated platforms where second order dynamics are dominant, noise levels are high and sensory limitations are more severe. In this paper, we introduce a model based state estimation method for dynamic running behaviors with a simple spring-mass runner. By using an approximate analytic solution to the dynamics of the model within an Extended Kalman filter framework, the estimation accuracy of our model remains accurate even at low sampling frequencies. We also propose two new event-based sensory modalities that further improve estimation performance in cases where even the internal kinematics of a robot cannot be fully observed, such as when flexible materials are used for limb designs. We present comparative simulation results to establish that our method outperforms traditional approaches which rely on constant acceleration motion models and that it eliminates the need for an extensive and unrealistic sensor suite.