By Topic

Joint User Scheduling and Adaptive Intercell Interference Cancelation for MISO Downlink Cellular Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sung-Hyun Moon ; Sch. of Electr. Eng., Korea Univ., Seoul, South Korea ; Changhee Lee ; Sang-Rim Lee ; Inkyu Lee

Recently, an adaptive intercell interference (ICI) mitigation technique has been proposed for downlink cellular systems as a means to increase throughput with low system complexity. However, in the prior work, the issue of intercell user scheduling has not been considered. In this paper, we study multiple-input-single-output (MISO) downlink cellular systems that jointly design adaptive ICI cancelation (ICIC) and intercell user scheduling assuming that partial channel state information (CSI) is shared among base stations (BSs). Since the optimal solution would require high complexity, we investigate a new low-complexity algorithm that selects the best users and their beamforming strategies in terms of maximizing the weighted sum rate (WSR). To this end, we first develop a simple threshold criterion for each user to decide the preferred beamforming strategy based on the derivation of the expected signal-to-interference-plus-noise ratio (SINR). Then, according to users' feedback about their decisions, a successive user and beamforming selection algorithm is performed at the BSs. From simulation results, we show that, combined with proportional fair scheduling, the proposed scheme provides excellent throughput performance with very low computational complexity and the amount of inter-BS CSI exchange. Furthermore, we discuss an extension of the proposed scheme to limited feedback systems and observe that our algorithm also provides similar advantages over conventional schemes with quantized feedback.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:62 ,  Issue: 1 )