Cart (Loading....) | Create Account
Close category search window
 

Mining Semantic Context Information for Intelligent Video Surveillance of Traffic Scenes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tianzhu Zhang ; Inst. of Autom., Beijing, China ; Si Liu ; Changsheng Xu ; Hanqing Lu

Automated visual surveillance systems are attracting extensive interest due to public security. In this paper, we attempt to mine semantic context information including object-specific context information and scene-specific context information (learned from object-specific context information) to build an intelligent system with robust object detection, tracking, and classification and abnormal event detection. By means of object-specific context information, a cotrained classifier, which takes advantage of the multiview information of objects and reduces the number of labeling training samples, is learned to classify objects into pedestrians or vehicles with high object classification performance. For each kind of object, we learn its corresponding semantic scene-specific context information: motion pattern, width distribution, paths, and entry/exist points. Based on this information, it is efficient to improve object detection and tracking and abnormal event detection. Experimental results demonstrate the effectiveness of our semantic context features for multiple real-world traffic scenes.

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:9 ,  Issue: 1 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.