By Topic

Mass Sensing With Optomechanical Oscillation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fenfei Liu ; Phys. Dept., Univ. of New Mexico, Albuquerque, NM, USA ; Mani Hossein-Zadeh

We demonstrate the application of an optomechanical oscillator (OMO) as a high-resolution mass sensor. The coupling between high-Q optical and mechanical modes of a single optical microcavity results in narrow linewidth mechanical oscillation driven by the radiation pressure of the circulating optical power. The oscillation frequency can be monitored upon detection of the modulated transmitted optical power. Therefore the optical wave plays a dual role as both the driving power and a sensitive probe. The narrow oscillation linewidth, combined with the sensitivity of the mechanical resonance to mass changes, makes OMO an excellent candidate for all-optical mass sensing. Experimental results and theoretical analysis show that OMO can function as a compact, low-power mass sensor with sub-pg sensitivity.

Published in:

IEEE Sensors Journal  (Volume:13 ,  Issue: 1 )