By Topic

The GN Model of Non-Linear Propagation in Uncompensated Coherent Optical Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pierluigi Poggiolini ; Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Torino, Italy

This paper is devoted to an in-depth discussion of the Gaussian Noise (GN) model which describes non-linear propagation in uncompensated coherent transmission systems. Similar models and validation efforts are reviewed. Then, the main equations of the GN model are introduced. An intuitive physical interpretation of the equations and their features is proposed. The main characteristics of the non-linear interference (NLI) noise spectra that the GN model produces are discussed. To ease model exploitation, a new formulation in hyperbolic coordinates is proposed, which makes numerical integration faster. New approximate closed-form solutions are also provided. An extension of the GN model to distributed-amplification scenarios is introduced. NLI noise accumulation versus distance and bandwidth are studied in depth. Finally, the GN model implications as to system and networks design and optimization are discussed.

Published in:

Journal of Lightwave Technology  (Volume:30 ,  Issue: 24 )