By Topic

Large-Vocabulary Continuous Speech Recognition Systems: A Look at Some Recent Advances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
George Saon ; IBM T. J. Watson Research Center, Yorktown heights, New York 10598 USA ; Jen-Tzung Chien

Over the past decade or so, several advances have been made to the design of modern large vocabulary continuous speech recognition (LVCSR) systems to the point where their application has broadened from early speaker dependent dictation systems to speaker-independent automatic broadcast news transcription and indexing, lectures and meetings transcription, conversational telephone speech transcription, open-domain voice search, medical and legal speech recognition, and call center applications, to name a few. The commercial success of these systems is an impressive testimony to how far research in LVCSR has come, and the aim of this article is to describe some of the technological underpinnings of modern systems. It must be said, however, that, despite the commercial success and widespread adoption, the problem of large-vocabulary speech recognition is far from being solved: background noise, channel distortions, foreign accents, casual and disfluent speech, or unexpected topic change can cause automated systems to make egregious recognition errors. This is because current LVCSR systems are not robust to mismatched training and test conditions and cannot handle context as well as human listeners despite being trained on thousands of hours of speech and billions of words of text.

Published in:

IEEE Signal Processing Magazine  (Volume:29 ,  Issue: 6 )