By Topic

Evaluating the Generalization of the Hearing Aid Speech Quality Index (HASQI)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kressner, A.A. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Anderson, D.V. ; Rozell, C.J.

Many developers of audio signal processing strategies rely on objective measures of quality for initial evaluations of algorithms. As such, objective measures should be robust, and they should be able to predict quality accurately regardless of the dataset or testing conditions. Kates and Arehart have developed the Hearing Aid Speech Quality Index (HASQI) to predict the effects of noise, nonlinear distortion, and linear filtering on speech quality for both normal-hearing and hearing-impaired listeners, and they report very high performance with their training and testing datasets [Kates, J. and Arehart, K., Audio Eng. Soc., 58(5), 363-381 (2010)]. In order to investigate the generalizability of HASQI, we test its ability to predict normal-hearing listeners' subjective quality ratings of a dataset on which it was not trained. This dataset is designed specifically to contain a wide range of distortions introduced by real-world noises which have been processed by some of the most common noise suppression algorithms in hearing aids. We show that HASQI achieves prediction performance comparable to the Perceptual Evaluation of Speech Quality (PESQ), the standard for objective measures of quality, as well as some of the other measures in the literature. Furthermore, we identify areas of weakness and show that training can improve quantitative prediction.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:21 ,  Issue: 2 )