By Topic

Improved Modelling of Tool Tracking Errors by Modelling Dependent Marker Errors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Thompson, S. ; Centre for Med. Image Comput., Univ. Coll. London, London, UK ; Penney, G. ; Dasgupta, P. ; Hawkes, D.

Accurate understanding of equipment tracking error is essential for decision making in image guided surgery. For tools tracked using markers attached to a rigid body, existing error estimation methods use the assumption that the individual marker errors are independent random variables. This assumption is not valid for all tracking systems. This paper presents a method to estimate a more accurate tracking error function, consisting of a systematic and random component. The proposed method does not require detailed knowledge of the tracking system physics. Results from a pointer calibration are used to demonstrate that the proposed method provides a better match to observed results than the existing state of the art. A simulation of the pointer calibration process is then used to show that existing methods can underestimate the pointer calibration error by a factor of two. A further simulation of laparoscopic camera tracking is used to show that existing methods cannot model important variations in system performance due to the angular arrangement of the tracking markers. By arranging the markers such that the systematic errors are nearly identical for all markers, the rotational component of the tracking error can be reduced, resulting in a significant reduction in target tracking errors.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:32 ,  Issue: 2 )