By Topic

The Effect of Mutual Coupling on the Nulling Performance of Adaptive Antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Svendsen, A.S.C. ; Dept. of Electr. & Comput. Eng., Ohio State Univ., Columbus, OH, USA ; Gupta, I.J.

The effect of mutual coupling on the performance of adaptive antennas has been a topic of considerable interest for the last three decades. The general conclusion of the work reported in the open literature is that mutual coupling degrades the performance of adaptive antennas. We have carried out an in-depth study of the effects of mutual coupling on the performance of adaptive antennas. Our studies show that this conclusion is not entirely correct. Yes, one does need the in-situ array manifold to obtain the fixed response in the desired signal direction. Otherwise, adaptive weights can also suppress the desired signal. Note that for adaptive antennas based on minimizing the mean squared error between the array output and a locally generated reference signal, this is not an issue. However, mutual coupling between antenna elements hardly affects the nulling performance of adaptive antennas. In fact, in a given size aperture, as the number of antenna elements is increased, one obtains better nulling performance, irrespective of the increased mutual coupling between antenna elements. Also, as expected, for strong wideband interfering signals, one should carry out space-time adaptive processing (STAP).

Published in:

Antennas and Propagation Magazine, IEEE  (Volume:54 ,  Issue: 3 )