By Topic

A 0.38 THz Fully Integrated Transceiver Utilizing a Quadrature Push-Push Harmonic Circuitry in SiGe BiCMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jung-Dong Park ; The Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Cupertino, CA, USA ; Shinwon Kang ; Ali M. Niknejad

A fully integrated transceiver operating at 0.38 terahertz (THz) has been demonstrated in 0.13 μm SiGe BiCMOS with fT = 230 GHz. We present a quadrature push-push harmonic circuitry consisting of the clamping pairs driven by balanced quadrature LO signals coupled through the transformers and the Coplanar Stripline (CPS). Harmonic generation of the clamping circuit is analyzed with a clamped sinusoidal model. Several terahertz circuits such as a quadrupler, a THz subharmonic mixer, and an IQ quadrature generator are implemented with the quadrature push-push circuitry to realize a homodyne FMCW radar. Radar functionality is demonstrated with ranging and detection of a target at 10 cm. The measured Equivalent Isotropically Radiated Power (EIRP) of the transmitter is -11 dBm at 0.38 THz and the receiver noise figure (NF) is between 35-38 dB while dissipating a power of 380 mW.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:47 ,  Issue: 10 )