By Topic

Accelerated Model of Modular Multilevel Converters in PSCAD/EMTDC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jianzhong Xu ; State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China ; Chengyong Zhao ; Wenjing Liu ; Chunyi Guo

Modular multilevel converters (MMC) are an effective option for the continuously growing demands of voltage-sourced converter-based high-voltage direct-current (VSC-HVDC) transmission. However, accurate modeling of MMC with a high level in PSCAD/EMTDC is extremely time-consuming and requires hardware. Based on the Kirchhoff's Law, an equivalent accelerated model for MMC is proposed. The essence of the new model is the partition of one large-scale admittance matrix into substantial small-scale matrices, which is mathematically demonstrated with the nodal analysis method. Finally, the detailed electromagnetic transient simulations are implemented for the comparisons of steady state and transient performances, and the results validate the proposed model.

Published in:

IEEE Transactions on Power Delivery  (Volume:28 ,  Issue: 1 )