By Topic

Box-particle PHD filter for multi-target tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Schikora, M. ; Dept. Sensor Data & Inf. Fusion, Fraunhofer FKIE, Wachtberg, Germany ; Gning, A. ; Mihaylova, L. ; Cremers, D.
more authors

This paper develops a novel approach for multitarget tracking, called box-particle probability hypothesis density filter (box-PHD filter). The approach is able to track multiple targets and estimates the unknown number of targets. Furthermore, it is capable to deal with three sources of uncertainty: stochastic, set-theoretic and data association uncertainty. The box-PHD filter reduces the number of particles significantly, which improves the runtime considerably. The small particle number makes this approach attractive for distributed computing. A box-particle is a random sample that occupies a small and controllable rectangular region of non-zero volume. Manipulation of boxes utilizes methods from the field of interval analysis. The theoretical derivation of the box-PHD filter is presented followed by a comparative analysis with a standard sequential Monte Carlo (SMC) version of the PHD filter. To measure the performance objectively three measures are used: inclusion, volume and the optimum subpattern assignment metric. Our studies suggest that the box-PHD filter reaches similar accuracy results, like a SMC-PHD filter but with much considerably less computational costs. Furthermore, we can show that in the presence of strongly biased measurement the box-PHD filter even outperforms the classical SMC-PHD filter.

Published in:

Information Fusion (FUSION), 2012 15th International Conference on

Date of Conference:

9-12 July 2012