Cart (Loading....) | Create Account
Close category search window
 

Synthetic aperture radar interferometry using one bit coded raw and reference signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Fornaro, G. ; Dipartimento di Ingegneria Elettron., Napoli Univ., Italy ; Pascazio, V. ; Schirinzi, G.

This paper is concerned about the generation of interferometric phase patterns using synthetic aperture radar (SAR) images obtained by processing the raw data and reference function both quantized at one bit (Signum Coded). Such processing technique involves one-bit coded (i.e., binary) sequences, and can be efficiently implemented in real time using very simple and low cost hardware. It is shown that the proposed SC processing technique preserves, besides the image intensities, also interferometric phase patterns, before and after phase unwrapping. To test the performance of the proposed technique, experiments have been carried out on real data relative to the ERS-1 mission. Quantitative comparison between the results of conventional and SC processing clearly show that the presented method can be used for quick-look DEMs generation. Moreover, in accordance with the SC-SAR theory, an upsampling has also been performed on the signals to be processed to obtain higher quality patterns. This produce a noticeable improvement of the obtained results, so that the SC techniques can be considered a valid alternative to the conventional ones, still preserving the advantages in terms of real time

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:35 ,  Issue: 5 )

Date of Publication:

Sep 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.