By Topic

Singing-voice separation from monaural recordings using robust principal component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Po-Sen Huang ; University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, 405 North Mathews Avenue, 61801 USA ; Scott Deeann Chen ; Paris Smaragdis ; Mark Hasegawa-Johnson

Separating singing voices from music accompaniment is an important task in many applications, such as music information retrieval, lyric recognition and alignment. Music accompaniment can be assumed to be in a low-rank subspace, because of its repetition structure; on the other hand, singing voices can be regarded as relatively sparse within songs. In this paper, based on this assumption, we propose using robust principal component analysis for singing-voice separation from music accompaniment. Moreover, we examine the separation result by using a binary time-frequency masking method. Evaluations on the MIR-1K dataset show that this method can achieve around 1~1.4 dB higher GNSDR compared with two state-of-the-art approaches without using prior training or requiring particular features.

Published in:

2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

Date of Conference:

25-30 March 2012