Attribute-efficient learning of decision lists and linear threshold functions under unconcentrated distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We consider the well-studied problem of learning decision lists using few examples when many irrelevant features are present. We show that smooth boosting algorithms such as MadaBoost can efficiently learn decision lists of length k over n boolean variables using poly(k, log n) many examples provided that the marginal distribution over the relevant variables is “not too concentrated” in an L2-norm sense. Using a recent result of Hoastad, we extend the analysis to obtain a similar (though quantitatively weaker) result for learning arbitrary linear threshold functions with k nonzero coefficients. Experimental results indicate that the use of a smooth boosting algorithm, which plays a crucial role in our analysis, has an impact on the actual performance of the algorithm.