By Topic

Real-Time Video-Based Traffic Measurement and Visualization System for Energy/Emissions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Morris, B.T. ; Univ. of Nevada, Las Vegas, NV, USA ; Cuong Tran ; Scora, G. ; Trivedi, M.M.
more authors

The ability to monitor the state of a given roadway in order to better manage traffic congestion has become increasingly important. Sophisticated traffic management systems able to process both the static and mobile sensor data and provide traffic information for the roadway network are under development. In addition to typical traffic data such as flow, density, and average traffic speed, there is now strong interest in environmental factors such as greenhouse gases, pollutant emissions, and fuel consumption. It is now possible to combine high-resolution real-time traffic data with instantaneous emission models to estimate these environmental measures in real time. In this paper, a system that estimates average traffic fuel economy, CO2 , CO, HC, and NOx emissions using a computer-vision-based methodology in combination with vehicle-specific power-based energy and emission models is presented. The CalSentry system provides not only typical traffic measures but also gives individual vehicle trajectories (instantaneous dynamics) and recognizes vehicle categories, which are used in the emission models to predict environmental parameters. This estimation process provides far more dynamic and accurate environmental information compared with static emission inventory estimation models.

Published in:

Intelligent Transportation Systems, IEEE Transactions on  (Volume:13 ,  Issue: 4 )