By Topic

Efficient Structure Learning of Markov Networks using L1-Regularization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Markov networks are commonly used in a wide variety of applications, ranging from computer vision, to natural language, to computational biology. In most current applications, even those that rely heavily on learned models, the structure of the Markov network is constructed by hand, due to the lack of effective algorithms for learning Markov network structure from data. In this paper, we provide a computationally efficient method for learning Markov network structure from data. Our method is based on the use of L1 regularization on the weights of the log-linear model, which has the effect of biasing the model towards solutions wheremany of the parameters are zero. This formulation converts theMarkov network learning problem into a convex optimization problem in a continuous space, which can be solved using efficient gradient methods. A key issue in this setting is the (unavoidable) use of approximate inference, which can lead to errors in the gradient computation when the network structure is dense. Thus, we explore the use of different feature introduction schemes and compare their performance. We provide results for our method on synthetic data, and on two real world data sets: pixel values in the MNIST data, and genetic sequence variations in the human HapMap data. We show that our L1-based method achieves considerably higher generalization performance than the more standard L2-based method (a Gaussian parameter prior) or pure maximum-likelihood learning. We also show that we can learn MRF network structure at a computational cost that is not much greater than learning parameters alone, demonstrating the existence of a feasible method for this important problem.