By Topic

Uncertainty, phase and oscillatory hippocampal recall

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Many neural areas, notably, the hippocampus, show structured, dynamical, population behavior such as coordinated oscillations. It has long been observed that such oscillations provide a substrate for representing analog information in the firing phases of neurons relative to the underlying population rhythm. However, it has become increasingly clear that it is essential for neural populations to represent uncertainty about the information they capture, and the substantial recent work on neural codes for uncertainty has omitted any analysis of oscillatory systems. Here, we observe that, since neurons in an oscillatory network need not only fire once in each cycle (or even at all), uncertainty about the analog quantities each neuron represents by its firing phase might naturally be reported through the degree of concentration of the spikes that it fires. We apply this theory to memory in a model of oscillatory associative recall in hippocampal area CA3. Although it is not well treated in the literature, representing and manipulating uncertainty is fundamental to competent memory; our theory enables us to view CA3 as an effective uncertainty-aware, retrieval system.