Emergence of conjunctive visual features by quadratic independent component analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, books, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In previous studies, quadratic modelling of natural images has resulted in cell models that react strongly to edges and bars. Here we apply quadratic Independent Component Analysis to natural image patches, and show that up to a small approximation error, the estimated components are computing conjunctions of two linear features. These conjunctive features appear to represent not only edges and bars, but also inherently two-dimensional stimuli, such as corners. In addition, we show that for many of the components, the underlying linear features have essentially V1 simple cell receptive field characteristics. Our results indicate that the development of the V2 cells preferring angles and corners may be partly explainable by the principle of unsupervised sparse coding of natural images.