By Topic

Part-based Probabilistic Point Matching using Equivalence Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Correspondence algorithms typically struggle with shapes that display part-based variation. We present a probabilistic approach that matches shapes using independent part transformations, where the parts themselves are learnt during matching. Ideas from semi-supervised learning are used to bias the algorithm towards finding ‘perceptually valid’ part structures. Shapes are represented by unlabeled point sets of arbitrary size and a background component is used to handle occlusion, local dissimilarity and clutter. Thus, unlike many shape matching techniques, our approach can be applied to shapes extracted from real images. Model parameters are estimated using an EM algorithm that alternates between finding a soft correspondence and computing the optimal part transformations using Procrustes analysis.