By Topic

Modeling Dyadic Data with Binary Latent Factors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$15 $15
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

We introduce binary matrix factorization, a novel model for unsupervised matrix decomposition. The decomposition is learned by fitting a non-parametric Bayesian probabilistic model with binary latent variables to a matrix of dyadic data. Unlike bi-clustering models, which assign each row or column to a single cluster based on a categorical hidden feature, our binary feature model reflects the prior belief that items and attributes can be associated with more than one latent cluster at a time. We provide simple learning and inference rules for this new model and show how to extend it to an infinite model in which the number of features is not a priori fixed but is allowed to grow with the size of the data.